Full TGIF Record # 136869
Item 1 of 1
DOI:10.1007/s11252-008-0059-6
Web URL(s):https://link.springer.com/article/10.1007%2Fs11252-008-0059-6
    Last checked: 10/04/2017
Author(s):Pouyat, Richard V.; Yesilonis, Ian D.; Golubiewski, Nancy E.
Author Affiliation:Pouyat and Yesilonis: US Forest Service, Northern Research Station, Baltimore Ecosystem Study, University of Maryland, Baltimore, Maryland; Golubiewski: New Zealand Centre for Ecological Economics, Massey University and Landcare Research, Palmerston North, New Zealand
Title:A comparison of soil organic carbon stocks between residential turf grass and native soil
Source:Urban Ecosystems. Vol. 12, No. 1, March 2009, p. 45-62.
Publishing Information:Andover, Hants U.K.: Chapman and Hall
# of Pages:18
Keywords:TIC Keywords: Carbohydrate storage; Carbon; Comparisons; Lawn turf; Native soils; Organic matter; Regional variation; Soil analysis; Urban forestry; Urban soils
Abstract/Contents:"A central principle in urban ecological theory implies that in urbanized landscapes anthropogenic drivers will dominate natural drivers in the control of soil organic carbon storage (SOC). To assess the effect of urban land-use change on the storage of SOC, we compared SOC stocks of turf grass and native cover types of two metropolitan areas (Baltimore, MD, and Denver, CO) representing climatologically distinct regions in the United States. We hypothesized that introducing turf grass and management will lead to higher SOC densities in the arid Denver area and lower densities in the mesic Baltimore area relative to native cover types. Moreover, differences between turf grass soils will be less than differences between the native soils of each metropolitan region. Within Baltimore, turf grass had almost a 2-fold higher SOC density at 0- to 1-m and 0- to 20-cm depths than in rural forest soils, whereas there were no differences with soils of urban forest remnants. Moreover, urban forest remnants had more than 70% higher SOC densities than rural forest soils. Within Denver, turf grass (>25 years of age) had more than 2-fold higher SOC densities than in shortgrass steppe soils, while having similar densities to Baltimore turf grass soils. By contrast, the native soils of Baltimore were almost 2-fold higher than the native steppe grass soils of Denver using SOC densities of remnant forests as representative of native soils in the Baltimore region. These results supported our hypothesis that turf grass systems will be similar in SOC densities across regional variations in climate, parent material, and topography. These similarities are apparently due to greater management efforts in the Denver region to offset the constraint of climate, i.e., anthropogenic factors (management supplements) overwhelmed native environmental factors that control SOC storage."
Language:English
References:57
See Also:Other items relating to: Carbon sequestration of turf
Note:Tables
Graphs
ASA/CSSA/SSSA Citation (Crop Science-Like - may be incomplete):
Pouyat, R. V., I. D. Yesilonis, and N. E. Golubiewski. 2009. A comparison of soil organic carbon stocks between residential turf grass and native soil. Urban Ecosystems. 12(1):p. 45-62.
Fastlink to access this record outside TGIF: https://tic.msu.edu/tgif/flink?recno=136869
If there are problems with this record, send us feedback about record 136869.
Choices for finding the above item:
DOI: 10.1007/s11252-008-0059-6
Web URL(s):
https://link.springer.com/article/10.1007%2Fs11252-008-0059-6
    Last checked: 10/04/2017
Find Item @ MSU
MSU catalog number: b4896713
Find from within TIC:
   Digitally in TIC by record number.
Request through your local library's inter-library loan service (bring or send a copy of this TGIF record)