Full TGIF Record # 280837
Item 1 of 1
Web URL(s):https://dspace.lboro.ac.uk/dspace-jspui/bitstream/2134/20339/3/Thesis-2016-Simpson.pdf
    Last checked: 02/21/2017
    Requires: PDF Reader
Publication Type:
i
Report
Material Type:Thesis
Monographic Author(s):Simpson, Murray
Author Affiliation:Loughborough University
Monograph Title:Sustainable Drainage of Sports Pitches, 2016.
Publishing Information:Ph.D. Thesis: Loughborough University
# of Pages:287
Collation:xvi, 271 pp.
Related Web URL:https://dspace.lboro.ac.uk/dspace-jspui/handle/2134/20339
    Last checked: 02/21/2017
    Notes: Item description page
https://search.proquest.com/docview/1837035634/E5F94FABAA464B56PQ/1?accountid=12598
    Last checked: 02/21/2017
    Access conditions: Item is within a limited-access website
    Notes: Item description page
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.689529
    Last checked: 02/21/2017
    Notes: Item description page
Keywords:TIC Keywords: Athletic fields; Drainage systems; Natural versus artificial turf; Sustainable land management
Abstract/Contents:"The drainage behaviour of sports pitches is not well understood nor has performance been measured in the past. Within planning authorities there is a perceived contribution of pitch water discharge to local flood risk; whereby all the rainfall surface runoff is rapidly channelled through the drainage system to the pitch outfall. However, empirical evidence from industry suggested that this may not be a realistic assumption from observations of low drainage volumes yielded from pitch drainage systems. Furthermore, discharge constraints imposed have in many cases resulted in grossly over-designed off-line drainage attenuation systems for new sports developments through lack of understanding. In contrast, sports pitches indeed have the potential to enhance the attenuation performance of the subsoils and provide localised effective management of surface water runoff, and a significant storage volume if designed appropriately The findings in this thesis confirm that pitch bases demonstrate the key functions that are in fact reflected in the design requirements of Sustainable Urban Drainage Systems (SuDS). This PhD research project was conducted to investigate and document the performance of common pitch construction and drainage systems to better characterise the key drainage mechanisms that occur and control the flow of surface rain water through the pitch to the discharge outfall. The project developed a triangulated approach to the investigations, comprising: field measurements of climate and discharge behaviour at a range of artificial and natural turf pitches in England; laboratory physical model testing of pitch component hydraulics; and predictive mathematical modelling of how a pitch system may be expected to perform hydraulically based on key material and system drainage principles. The field monitoring systems were developed as part of the research, as was bespoke laboratory physical simulation of a pitch construction. It was found that very variable yields (% out versus % in) of water were detected from the monitored field sites. The values varied across a range of <1 to 88%, with the natural turf providing higher yields in general. The antecedent weather patterns did not show a clear relationship with yield as might have been expected. However, it was not always possible to retrieve detailed information on the subsoil conditions or hydraulic capability reducing the conclusiveness of the discharge flow measurements. The scaled laboratory testing of pitch materials established the importance and magnitude of barriers to percolation of surface water through the layers of the pitch constructions, in particular artificial pitch profiles. It was found that a significant proportion of the total rainfall head was required to instigate percolation of surface water through the carpet and into the pitch i.e. breakthrough head. In addition, several constituent pitch materials exhibited water retention characteristics that reduced that rate of free percolation of surface water through the pitch profile. The net impact is to reduce the net available head of water to further drive flow through the layers to the pipe network drainage system. A conceptual hydraulic model, developed from the literature, was further developed into a simple numerical model. The model was informed by parameters determined from the laboratory measurements and key groundwater drainage flow theory to attempt to replicate a pitch drainage system. It was envisaged that the models would be validated by the field data, although this proved challenging as a result of the field data variability and the multivariate nature of the influences on flows measured. A key finding of the modelling was further establishing the likely head of water generated at the interfaces between the bottom of the granular sub-base and the pipe collection drainage system beneath. This resulted in limited pipe infiltration and low total flows to the outfall, further corroborating the project field results and the anecdotal observations from practitioners. The combined unique data sets provide a refined model for sports pitch drainage to both reinforce understanding and inform practical design and operation."
Language:English
References:50+
See Also:See also related article "The Loughborough project: Sustainable drainage for sports surfaces - analysing the performance of pitch drainage systems" Bulletin for Sports Surface Management, 257 April 2012, p. 39-41, R=202741. R=202741

See also related item, Drainage Behaviour of Sport Pitches - Findings from a Research Study, 2016, R=281096. R=281096
Note:"A Doctoral Thesis submitted in partial fulfilment for the degree of Doctor of Philosophy of Loughborough University"
"15th February 2016"
"Dissertation/thesis number: 10293279"
"ProQuest document ID: 1837035634"
Advisors: Paul Fleming and Matthew Frost
Includes "Acknowledgements"; p. v
Includes "List of figures"; pp. xi-xv
Includes "List of tables"; p. xvi
Includes appendix: "Preliminary Flo-Pod design report"; pp. 249-260
Includes appendix: "H Flume specification"; pp. 261-262
Includes appendix: "Revised FloPod design and performance assessment"; pp. 263-268
Includes appendix: "Field monitoring site screening details"; pp. 269-271
Pictures, color
Figures
Tables
Graphs
ASA/CSSA/SSSA Citation (Crop Science-Like - may be incomplete):
Simpson, Murray 2016. Sustainable Drainage of Sports Pitches. Ph.D. Thesis: Loughborough University.
Fastlink to access this record outside TGIF: https://tic.msu.edu/tgif/flink?recno=280837
If there are problems with this record, send us feedback about record 280837.
Choices for finding the above item:
Web URL(s):
https://dspace.lboro.ac.uk/dspace-jspui/bitstream/2134/20339/3/Thesis-2016-Simpson.pdf
    Last checked: 02/21/2017
    Requires: PDF Reader
Find from within TIC:
   Digitally in TIC by record number.
Request through your local library's inter-library loan service (bring or send a copy of this TGIF record)